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Figure 1: (a) A PD-L1 protein (red) on a cancer cell is known to bind to two PD-1 proteins (blue, yellow) on T cells and restrain the 
T cells’ activation that is necessary for killing pathogens in an immune response [13]. (b-e) In our system, synthetic biologists 
designing a new protein that binds to PD-L1 in place of PD-1 to prevent this can explore a wide range of design options by 
intuitively authoring secondary structures that conform to the binding sites of PD-L1 with their bare hands in VR. 

ABSTRACT 
Recent developments in AI have made it possible to design new 
proteins that are crucial to meeting humanity’s needs. However, 
tools for exploring the 3D structures of proteins in the early stages 
of AI-based protein design are lacking, leading to many preventable 
trials and errors and much wasted time and eforts in the design 
process. To address this, we propose a novel VR interaction sys-
tem that enables synthetic biologists to intuitively author the 3D 
structures of proteins with their bare hands. 
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1 INTRODUCTION 
Proteins, excluding water, are the most abundant components of the 
human body and act as bio-micromachines that take part in nearly 
all bodily functions such as respiration, digestion, movement, and 
immune response. Proteins accomplish these functions by binding 
with other proteins or chemicals, the occurrences and whereabouts 
of which are determined by the 3D structures of the proteins, which 
are in turn determined by the sequence of diferent amino acids 
that comprise them. 

Each of the 20 types of amino acids found in the human body 
consists of a structural backbone that is identical across all types 
and a side chain that is unique to each type. When tens, hundreds, 
or even thousands of amino acids sequentially connect, the forces 
between the side chains and water molecules cause the sequence 
to fold, in turn causing the backbone molecules to locally form 
secondary structures (Figure 2), the architectural building blocks 
of the 3D structures of proteins [1]. 

Figure 2: Secondary structures of proteins refer to three local 
patterns of folded amino acid sequences. (a) α-helices (blue) 
form due to forces between adjacent atoms in the backbone. 
(b) β-sheets (yellow) consist of an arrangement of nearby β-
strands that form due to forces between non-adjacent atoms 
in the backbone. (c) Loops (pink) form due to the lack of such 
forces. These are commonly visualized as helical ribbons, 
arrow-shaped ribbons, and thin wires, respectively. 
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Synthetic biologists envision a future in which they can design 
and synthesize new proteins that are crucial to meeting humanity’s 
needs, such as those that can cure cancer, fght against infectious 
diseases, and break down plastic wastes. Recent developments of 
AI-based techniques are pushing toward this future [5]: AlphaFold 
[10] and RosettaFold [2] quickly and rapidly predict 3D structures 
of proteins, given amino acid sequences; ProteinMPNN [7] predicts 
plausible amino acid sequences, given 3D structures of proteins; 
RFDifusion [16] flls in missing gaps with suitable secondary struc-
tures, given incomplete 3D structures of proteins. 

As with products, when developing new proteins, it is crucial 
to explore a wide range of options in the early stages to achieve 
desired outcomes with fewer trials and errors later on. In product 
design, “sketching” is a quintessential tool for rough, but quick 
and easy ideation during these stages. In this study, by extending 
WireSketch [12], a system of bimanual interactions for intuitively 
authoring 3D curve networks, we propose a novel VR interaction 
system for helping synthetic biologists explore 3D structures of 
proteins in the early stages of AI-based protein design (Figure 1). 

2 EXPERT INTERVIEWS 
To understand the needs of the target users, we observed and 
recorded the workfows of four synthetic biologists working on 
AI-based protein design and conducted structured interviews. Their 
research experience in protein and protein design averaged 6.25 
years. We collected an average of 2.5 hours of data from each expert. 

According to them, the current AI-based protein design process 
takes four steps. First, conceptualize 3D structures of new proteins 
that can bind to their targets. Second, predict amino acid sequences 
that best satisfy the desired structures and bindings [7, 10]. Third, 
fne-tune the amino acid sequences to maximize the strength and 
stability of the bindings [9]. Fourth, validate the results through 
DNA synthesis, protein expression, and structural analysis [6]. 

During the frst step, however, exploring a wide range of design 
options for the 3D structures of proteins presents signifcant chal-
lenges: The irregular shapes of intricately intertwined secondary 
structures make it difcult to grasp their spatial relations through 
a 2D screen. In addition, authoring the 3D structures of proteins in-
volves moving, rotating, lengthening, shortening, bending, twisting, 
cutting, and joining secondary structures in 3D space, which can 
be cumbersome with 2D input devices such as a mouse. Moreover, 
as not all manipulations are physicochemically valid, guesswork 
leads to many trials and errors. Finally, the lack of an integrated 
system necessitates frequent and distracting jumps between various 
specialized tools [3, 8, 11, 14]. 

3 INTERACTIVE SYSTEM 
Inspired by the synthetic biologists waving their hands in midair 
and wielding whatever objects that lie around in a desperate attempt 
to express ideas regarding the 3D structures of new proteins, we 
propose a novel VR interaction system that enables quick and easy 
sketching of new proteins through intuitive bare hand interactions. 

To achieve this, we extend WireSketch [12], a VR interaction 
system for authoring 3D curve networks during the early stages 
of product design. Because the intuitive bare hand interactions of 
the system that emulate wire crafting make it quick and easy to 

roughly create 3D curves, precisely edit them, and weave a network 
from them, we believe that it is an ideal platform upon which to 
implement functionalities needed for designing new proteins. 

Extending WireSketch, our system supports the creation of three 
types of secondary structures through hand gestures that mimic 
holding physical objects (Figure 3a-c). It also automatically converts 
the 3D curve networks into physicochemically valid 3D structures 
of proteins to the best approximation (Figure 3d-f). Finally, our 
system exports the results in the standard PDB (Protein Data Bank) 
fle format [4] to be used as input of AI-based tools [7, 10] for the 
subsequent stages of protein design. 

Figure 3: Secondary structures of proteins are created with 
midair hand gestures that resemble holding (a) a tube (α-
helix), (b) a paper strip (β-strand), or (c) a wire (loop). With 
the interactions of WireSketch [12], users can freely (d) bend 
and twist, (e) join, and (f) arrange the secondary structures. 

4 IMPLEMENTATION 
Our system was implemented using the Unity 3D game engine and 
the Meta Quest Pro VR headset with the built-in hand tracking 
capability. We referred to the work of Priestle [15] to calculate 
physicochemically valid 3D structures of new proteins. To showcase 
the user scenario of our system, we used it to design a new protein 
that can potentially mitigate the adverse efects of cancer cells on 
the healthy functioning of the immune system [13] (Figure 1). 

5 CONCLUSION & FUTURE WORK 
Based on our expert interviews with synthetic biologists, we de-
signed and implemented a novel VR interaction system for quickly 
and easily expressing design ideas on 3D structures and the bindings 
of new proteins with bare hands during the early stages of AI-based 
protein design. Our system enables the authoring of physicochemi-

cally valid 3D structures consisting of multiple secondary structures 
such as α-helices, β-strands, and loops, and exporting the design 
outcomes in the standard PDB fle format [4]. In future work, we 
will present a novel workfow for AI-based protein design by inte-
grating a generative AI, such as RFDifusion [16], into our system. 
We will also conduct formal evaluations with synthetic biologists 
to validate the system’s usefulness and usability. 
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